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Abstract
This practical example of angle holonomy has a mis-stated derivation which is
rectified here lest it discredit the results obtained, which need no amendment.

PACS numbers: 03.65.Vf, 84.30.Bv

The dynamical system considered is a linear electrical circuit with a time-dependent inductance
L(t), capacitance C(t) and resistance R(t) in series. The equation governing the charge Q

which has passed is, as stated in [1],
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or defining P ≡ L dQ/dt , the equivalent first-order equations are(
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Because R is present, representing dissipation, the matrix here has non-zero trace, that
is, it violates Liouville’s theorem that the flow in phase space (Q,P ) is divergenceless.
Consequently, since Hamilton’s equations imply Liouville’s theorem, there is no Hamiltonian
leading to this equation (contradicting equation (3) of [1]). If R were zero the Hamiltonian
would be H(Q,P) = P 2/2L + Q2/2C.

Dissipative dynamical systems can exhibit angle holonomy of a kind though, as was
shown by Kepler and Kagan [2] who analysed the phenomenon for a limit cycle. For a linear
system such as the present one there is no limit cycle, only an attracting limit point at the
origin in phase space. Nevertheless a clear, albeit non-canonical, angle exists, namely that of
the phase point around the origin. To represent it in a conventional context one can introduce
an artificial isotropic dilation of phase space by defining new coordinates p = exp

(∫
R
2L

dt
)
P

and q = exp
(∫

R
2L

dt
)
Q. This dilation keeps unchanged the angle of a phase point about the

origin. This is may be the intention in equation (4) of [1], but the signs of the two exponents
needed are the same, not opposite, specifically so that the transformation is a dilating one, not
canonical.
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The new coordinates q and p obey the equations(
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)
=
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.

This matrix is traceless, so the phase flow in the artificial phase space (q, p) is divergence free
and is generated by the Hamiltonian H(q, p) = q2/2C +Rqp/2L+p2/2L. This is analogous
to equation (4) of [1] and the usual formalism can be invoked leading to the stated results for
angle holonomy. The rectified derivation just given has not required any amendment of the
results, which stand as given in [1].

In making this correction I might remark incidentally that in the same issue of J. Phys. A:
Math. Gen. as the original letter [1], I myself stand corrected on a point of faulty reasoning
also concerning holonomy [3]. Once again there, the final results need no amendment.
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